skip to main content


Search for: All records

Creators/Authors contains: "Attanayake, Nuwan H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Monolayer molybdenum disulfide (MoS 2 ) is one of the most studied two-dimensional (2D) transition metal dichalcogenides that is being investigated for various optoelectronic properties, such as catalysis, sensors, photovoltaics, and batteries. One such property that makes this material attractive is the ease in which 2D MoS 2 can be converted between the semiconducting (2H) and metallic/semi-metallic (1T/1T′) phases or heavily n-type doped 2H phase with ion intercalation, strain, or excess negative charge. Using n -butyl lithium (BuLi) immersion treatments, we achieve 2H MoS 2 monolayers that are heavily n-type doped with shorter immersion times (10–120 mins) or conversion to the 1T/1T′ phase with longer immersion times (6–24 h); however, these doped/converted monolayers are not stable and promptly revert back to the initial 2H phase upon exposure to air. To overcome this issue and maintain the modification of the monolayer MoS 2 upon air exposure, we use BuLi treatments plus surface functionalization p-(CH 3 CH 2 ) 2 NPh-MoS 2 (Et 2 N-MoS 2 )—to maintain heavily n-type doped 2H phase or the 1T/1T′ phase, which is preserved for over two weeks when on indium tin oxide or sapphire substrates. We also determine that the low sheet resistance and metallic-like properties correlate with the BuLi immersion times. These modified MoS 2 materials are characterized with confocal Raman/photoluminescence, absorption, x-ray photoelectron spectroscopy as well as scanning Kelvin probe microscopy, scanning electrochemical microscopy, and four-point probe sheet resistance measurements to quantify the differences in the monolayer optoelectronic properties. We will demonstrate chemical methodologies to control the modified monolayer MoS 2 that likely extend to other 2D transition metal dichalcogenides, which will greatly expand the uses for these nanomaterials. 
    more » « less
  2. Thermal chemical synthesis of conjugated polymers has often been plagued by low product yields, by-product contamination and high-cost catalysts. Electrochemical synthesis is an alternative strategy that can overcome these failures to obtain highly efficient syntheses. Herein, we present the study of diketopyrrolopyrrole-bisthiophene (DPPT 2 ), diketopyrrolopyrrole-bisfuran (DPPF 2 ) and thienothiadiazole-bisthiophene (TTDT 2 ) for diblock copolymerization with terthiophene (T 3 ) as a π-linker to form tunable narrow band gap polymers. The polymers suspended as thin films have similar redox characteristics to the monomers with potential shifts that prove the identity of the respective polymers. Electrochemical impedance measurements were carried out in the −0.6 V to 1.0 V potential range with an average electron transport resistance ( R e ) value of 110 Ω irrespective of the applied potential. This confirms the polymers to have higher intrinsic electrical conductivity. The atomic ratios of the synthesized materials were calculated experimentally using energy dispersive X-ray (EDX) analysis, and they confirm the theoretical composition of the polymers. These doped polymers exhibit absorption bands in the visible to SWIR region (800–1800 nm) with optical band gaps from 0.773 to 1.178 eV in both the solid and the solution state. 
    more » « less
  3. Block copolymers comprising benzothiadiazole were successfully electro-copolymerized leading to (BTD-T 2 ) n (BTD-F 2 ) m , where n and m were varied in a perfectly controllable, well-defined manner. The polymers were characterized by cyclic voltammetry, AC-impedance, SEM–EDAX and XPS analyses. They exhibit absorbance and emission in the near infrared (NIR) region. Results support an efficient strategy towards the creation of even more complex materials with innumerable possible applications in optoelectronic. 
    more » « less
  4. Abstract

    Direct electrochemical production of dissolved ozone could potentially provide economic wastewater treatment and sanitation or a valuable chemical oxidant. Although Ni‐Sb‐SnO2electrocatalysts have the highest known faradaic efficiencies for electrochemical ozone production, the activity and selectivity are not yet sufficient for commercial implementation. This work finds that co‐doping Ni and Gd increases the ozone selectivity by a factor of three over Ni alone. These findings are the first demonstration of an active dopant other than Ni in SnO2. Electrochemical and physical characterization show that trends in ozone activity are caused by chemical catalysis, not morphology effects, and that conduction band alignment is not a catalytic descriptor for the system. Selective radical quenching experiments and quantum chemistry calculations of thermodynamic energies suggest that the kinetic barriers to form solution‐phase intermediates are important for understanding the role of dopants in electrochemical ozone production.

     
    more » « less
  5. Abstract

    Thienothiadiazole‐bisthiophene (TTDT2) and diketopyrrolo–pyrrole–bisthiophene (DPPT2) are successfully electro‐copolymerized with terthiophene (T3) as an initiator and linker at low oxidative potentials. AC impedance analysis, absorption spectroscopy, and elemental composition via SEM‐EDX support the formation of donor–acceptor (D–A) type alternating block copolymers, poly(T3‐TTDT2), and poly(T3‐DPPT2). Unique optical properties that span into the near infrared‐II(>1000 nm) region and inherent electrical conductivity at the p‐type regime, n‐type regime, and in between the two regimes (i.e., typical insulator region) are observed. This study showcases the advantages of electro‐polymerization toward tailoring of next generation opto‐electronic materials.

     
    more » « less